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“Human intelligence can be

SO precisely described that

a machine can be made to
simulate it.”

1956 Dartmouth Summer Research
Project on Atrtificial Intelligence
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Artificial Intelligence in Cardiology and
Cardiac Electrophysiology
As of AugUSt 2024, Cardiology has embraced Al more than most other specialties AIgammlif‘:p':::?:"elmr;phys'o'gy

th e I:D A h a S Dave Fornell | May 12, 2023 | Cardiovascular Business | Artificial Intelligence 0‘
authorized 950 |

|
Al/ML enabled
medical devices,
98 are specifically
designed for /(

cardiology.

Google scholar:
“Artificial intelligence” — 7,090,000 results
“Aspirin’ — 1,580,000 results




Current care scenario

Interprets test

Advises patient on diagnosis

A A A

Gives plan and treatment




Imagine this scenario

Risk of heart disease

Risk of future heart attack

Probability of sudden death

' Jﬁf_gﬁfugﬁj_Jﬁf
Risk of heart failure
Metabolic parameters
Lifespan

Etc. etc.




Definitions

« Artificial intelligence (Al)

« Capability of a machine to imitate intelligent human behavior or perform
tasks that typically require human intelligence

« Machine learning (ML)
« Subset of Al in which computers learn from experience without explicit
programming

* Deep learning (DL)
« Subset of machine learning that uses artificial neural networks



Definitions

« Artificial neural networks (ANN)

« Generic architecture for a mathematical model to teach computers to
learn, inspired by the human brain’s neural structure

« Convolutional neural networks (CNN)

 Type of deep learning algorithm optimized for processing grid-like data
such as images by learning new features that distinguish them into

different categories

* Algorithm
« Set of mathematical procedures used to learn patterns from data



Data Science Artificial Intelligence Machine Learning Deep Learning

Data acquisition Enabling Having Emulating the
and prepa.ration; machines to machines learn layers by which a 53 Frone
analytics, emulate human from dataand brain recognizes i velocity
statistics and intelligence evidence patterns
mathematical
sciences

Figure 1  Positioning of disciplines commonly associated under the rubric of “Al.” This includes data science, artificial intelligence, machine learning, deep
learning, and big data. Data velocity refers to the speed in which data are generated, distributed, and collected.



Recognitionand
classification of
arrhythmias

ECG's of arrhythmias

7/
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deep neural network

Real world: Al — Machine Learning:
Human expert interpretation Superior pattern recognition



Feature Extraction

Data Gathering

Feature Engineering

o 4

Researchers use their experience
to condese raw data into
meaningful representations

Feature Learning

RO

ML model uses the training data
to systematically extract features

N~V
Test Data Training Data Features \

Supervised Learning Unsupervised Learning
Model Training

En

Parameters Data Transfrmauons
- . —

S

Data Vizualization Model

True Targets  Predictions

1o
T &

Loss function
Model Testing
@ Evaluatio
- -
o —
v m——
Best Model prediction

Machine Learning Workflow

DAITA
COMPUTER ANALYSIS
I
PATTERNS PROCESSING

Supervised Reinforcement
Learning

Unsupervised

Learning Learning

Trayanova N et al. Circ Res 2021;128:544-566



Uses & Clinical Applications

Artificial Intelligence
in Heart Disease

Patient Safety &
Data Protection

Cardiac Imaging é,(; ; L\_-
- S

Electrocardiology <« | ' Bias and Fairness

Contivous ml: , |l @  Accountabiitya
Monitoring  o——tis A4 Reliability

Regulations &

Mobile & Wearable
Technologies

Liability
Cybersecurity &
Genstics W %% System Upgrades
=
Electronic Health N Clinical Decision
Records Vo d Making
L__J= J

Precision Medicine to
Improve Patient Outcomes

sabuajeyn %3 sdeo

Armoundas A et al.Circulation. 2024;149



Al Is transforming cardiovascular care, without us
knowing it

CENTRAL ILLUSTRATION Key Studies in Cardiovascular Artificial Intelligence by Imaging Modality

Electrocardiograms
and Wearables

« Detection of structural
heart disease from
12-lead ECG

« Detection of atrial
fibrillation wearable
smartwatch

« Screening for

asymptomatic LV
dysfunction (LVEF <50%)

Elias P, et al. J Am Coll Cardiol

Echocardiograms

« Cardiologist agreement on
LVEF greater with Al vs
sonographer

« Diagnosis of HCM and CA
from other causes of LVH

* Novice users assisted to
quickly and accurately
assess LV

. 2024:83(24):2472-2486.

MRI, Nuclear, CT

* Auto-assess coronary
calcium on all CT scans to
find untreated CAD

« Perivascular fat attenuation
index on Coronary CTA to
predict mortality

« Al-based virtual native
enhancement replacing
LGE on CMR

Coronary
Angiography
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« Automated LVEF calculation
without requiring
ventriculogram

« Prediction of MACE based
on plaque morphology on
angiography

« Coronary artery stenosis
localization and estimation
during LHC




Overview of Al in Cardiac Electrophysiology

Digital Biomedical Data in Al and ML Interpretation of Data AV [ GHTRC
Cardiac Electrophysiology * Practice and Research
Modern Deep Learning Enhanced Disease
« Smartwatch and wearables + Use of deep ngur al networks - Detection and Dlagnosls
- Mobile phone technology . Dogs not. require manual feature (e.g. smartwatch detection
» Electrocardiograms B sk , & of atrial fibrillation)
+ Medical imaging * Popular with complex raw d.a?a in large
. Computer modeling and Data datasets (e.g. free text in clinical notes,
simulation preparation ECG waveforms) Predlctlng Outcomes
» Electronic medical record —— , (e.g. predicting cardiac
(EMR) and clinical Traditional Machine Learning resynchronization therapy
outcomes « Use of older machine learning device response)
algorithms (e.g. support vector
machine, random forest)
— « Requires feature definition or - Novel Disease
engineering Characterization
* Popular with data with pre-defined a— (e.g. characterizing
features (e.g. EMR clinical variables, complex fibrosis patterns
ECG parameters) in atrial fibrillation)

Circ Arrhythm Electrophysiol. 2020;13:e007952



Al capabilities in Electrocardiography

. Arrhythmia detection/diagnosis

Prediction of potential arrhythmias in sinus rhythm
. Detection of arrhythmogenic syndromes

. Prediction of sudden cardiac death/risk

. Detection of structural heart disease

. Prediction of future cardiovascular disease

. Detection of occult conditions

. Detection of miscellaneous medical conditions

© N o AWM PR




Arrhythmia detection using Al in ECG

ARTICLE

 https://doi.org/10.

.1038/541467-020-1543 ’;;»“’“ﬂ

Automatic dié r{osis of the 12-lead ECG usin : .
a deep neura|gnetwork s Al interpretation of ECG

Antonio H. Ribeiro 2™, Manoel Horta Ribeiro!, Gabriela M. M. Paix&o'3, Derick M. Oliveira', O u t p e rfo r m ed p h yS I C I an S

Paulo R. Gomes'3, Jéssica A. Canazart'3, Milton P. S. Ferreira!, Carl R. Andersson?, Peter W. Macfarlane?,
Wagner Meira Jr.!, Thomas B. Schén 2% & Antonio Luiz P. Ribeiro @ 3%

Table 2 (Performance indexes) Scores of our DNN are compared on the test set with the average performance of: (i) 4th year
cardiology resident (cardio.); (ii) 3rd year emergency resident (emerg.); and (iii) 5th year medical students (stud.).

Precision (PPV) Recall (Sensitivity) Specificity F1 score

DNN cardio. emerg. stud. DNN cardio. emerg. stud. DNN cardio. emerg. stud. DNN cardio. emerg. stud.

1dAVb 0.867 0905 0.639 0605 0929 0.679 0.821 0929 099 0997 0984 0979 0.897 0.776 0.719 0.732
RBBB 0895 0868 0963 0914 1000 0.971 0.765 0941 099 0994 0999 099 0.944 0.917 0.852 0.928
LBBB 1.000 1000 0963 0.931 1.000 0900 0867 0900 1000 1000 0999 0997 1000 0947 0.912 0.915

SB 0833 0833 0824 0750 0938 0938 0875 0750 099 099% 099 0995 0.882 0.882 0.848 0.750
AF 1.000 0.769 0800 0571 0.769 0.769 0.615 0923 1000 099 0998 0989 0.870 0.769 0.696 0.706
ST 0947 0968 0946 0912 0973 0.8 0946 0838 0997 0999 0997 099 0.960 0.882 0946 0.873

PPV positive predictive value. The bold values represent the best scores.

Ribiero A et al. Nature Comm 2020; 11:1760




Arrhythmia detection using Al in ECG

[ ] L ] [ ] . L ]
Automatic multilabel electrocardiogram diagnosis of heart
1.0 - -
0g+° + 4
hyth ducti b liti ithdeep | ing: * ]
r M Oor conauction abnormalities wi eep iearning: 2 071 ] i
2 06 —— Normal model result i |
§ 05 0-6 years group i i
7-12 years group
a cohort study e f
034 ® Physician average 7 T
02 T T T T 1 T T T T 1 T T T 1
Hongling Zhu*, Cheng Cheng*, Hang Yin, Xingyi Li, Ping Zuo, Jia Ding, Fan Lin, Jingyi Wang, Beitong Zhou, Yonge Li, Shouxing Hu, Yulong Xiong, Paroxysmal supraventricular  Artificial atrial pacing Artificial ventricular pacing
A . tachycardia rthythm rhythm
Binran Wang, Guohua Wan, Xiaoyun Yang, Ye Yuan 10 -
094 -
0-8 -
Model AUCROC (95%Cl)  Model sensitivity (95% Cl)  Model specificity (95% Cl) Model F1 score (95% Cl) Physicians’ g 077 )
mean F1 g 067 ]
& 054 .
score 044 1
Normal 1-000 (1-000-1-000) 1-000 (1-000-1-000) 1.000 (0-999-1-000) 0-998 (0-994-1.000) 0-834 034 1
0-2
Atrial flutter 0-993 (0-99-0-995) 0-898 (0-884-0-912) 0-992 (0-991-0-993) 0880 (0-867-0-893) 0836 T T T — T T T 1 T —T
Atrial fibrillation 0-991 (0-989-0-993) 0-873 (0-856-0-889) 0985 (0:982-0-987) 0-863 (0-848-0.877) 0839 i Loyt v i it
Paroxysmal supraventricular tachycardia 0-982 (0-976-0-987) 0-895 (0-887-0-904) 0-999 (0-998-0-999) 0931 (0-927-0-936) 0-808 1'0} -|4 b
Artificial atrial pacing rhythm 1:000 (0-999-1-000) 0986 (0.972-1-000) 1.000 (1.000-1-000) 0992 (0-983-1-000) 0947 o i i
Avrtificial ventricular pacing rhythm 0-990 (0-988-0-991) 0-890 (0-880-0-900) 0-997 (0-996-0-997) 0-917 (0-909-0-924) 0-909 2 o7 . :
Mobitz type | second-degree atrioventricular block  1-000 (1-000-1-000) 0-988 (0-976-0-999) 1000 (0-999-1-000) 0-989 (0-981-0-997) 0952 g 06 . -
& 05 - .
Wolff-Parkinson-White syndrome type B 0-997 (0-995-0-999) 0-917 (0-899-0-935) 0-998 (0-997-0-999) 0-941 (0-931-0-951) 0-858 04 - g
Wolff-Parkinson-White syndrome type A 1-000 (1-000-1-000) 0-991(0-983-0:998) 0-997 (0-996-0-997) 0-972 (0-967-0-978) 0891 03 7 7
02
Mean 0995 (0-993-0-996) 0937 (0-926-0-948) 0-996 (0-995-0-997) 0-943 (0-934-0-951) 0-875 0 01 02 03 04 05 0 01 02 03 04 05 O 01 02 03 04 05
1-specificity 1-specificity 1-spedificity

Nine of the most common arrhythmias are shown here; results for other classes are shown in appendix 1 (p 9). AUC=area under the curve. ROC=receiver operating characteristic.

Figure 3: ROC curves of prediction sensitivity of the deep learning model for nine of the included rhythm
classes, compared with physicians

ROC=receiver operating characteristic.

Table: Performance summary of the deep learning model in arrhythmia diagnosis, and F1 scores for the deep learning model and physicians working in cardiology departments

Zhu H et al. Lancet Digital Health 2020; 2: e348-57



Apple Heart Study

Recruitment
29/Nov/2017 to
31/Jul/2018

k-

The new Apple Watch has a heart monitor
and the FDA approves

Health apps can help patients take charge of their health, says the American Heart

Association, which also suports the EKG app.

Virtual

Notification .
consultation

419.297 2.161 (0,52%) 945 (44%) 658 (70%) 153/450 (34%)
participants participants participants participants participants
> 65 years 2 || >65 years > 3,2% received > 65 years 2>

24.262 < 40 years > 0,16% 450/658 (68%) 35%

returned

Huawel Heart Study

CENTRAL ILLUSTRATION: Mobile Health Technology for Improved Atrial
Fibrillation Screening and Transfer Into a Holistic and Integrated Care

”Q*Q
ﬁ\ [ Y Hngé\[filt\al s> Mobile Atrial Fibrillation App
0.2% received th = 95.1% entered the MAFA
2% received the 87.0% had AF integrated care program
1825%&&?«: notification of confirmed by based on the ABC
i suspected AF doctors (Atrial ﬁbrilla}:on Better Care)
Pathway

Guo, Y. et al. J Am Coll Cardiol. 2019;74(19):2365-75.




Arrhythmia detection using Al in ECG

TABLE 2 Selected Studies Using Artificial Intelligence Within Cardiology

Other
First Author, Performance
Year Purpose Input Sites Patients Studies AUC Strengths Limitations Metrics
Guo et al, Detection of atrial PPG 187,912 — — + Translation of — High selection bias 87% of patients with
2019 fibrillation on 12-lead ECG for patients with suspected AF
wearable model to Apple Watch, notification and
smartwatch popular MyChart, research follow-up had
consumer compliance confirmed AF
device
Perez et al, Detection of atrial PPG 419,297 — — + Large study with — No follow-up to 0.5% of patients
2019 fibrillation on popular determine stroke received irregular
wearable consumer benefit pulse notification
smartwatch device — Depended on and follow-up; 34%
+ Tackled participant had confirmed AF
implementation adherence to
challenges of follow-up
real-world measures,
population with potentially
low disease introducing bias
prevalence
Lubitz et al, Detection of atrial PPG 455,699 — — + Large study with — Detection during 1% of patients received
2022 fibrillation on popular active motion irregular pulse
wearable consumer remains notification and
smartwatch device significant follow-up; 32% had
+ Included challenge confirmed AF
medical/social
history data

Elias P et al. 3 Am Coll Cardiol 2024:83:2472—2486




Prediction of paroxysmal AF in sinus rhythm

TABLE 2 Selected Studies Using Artificial Intelligence Within Cardiology
Other
First Author, Performance
Year Purpose Input Sites Patients Studies AUC Strengths Limitations Metrics
Attia et al, Identification of atrial 12-lead ECG 1 180,922 649,931 0.87 + First study to — Significant AUC increased to 0.90
2019 fibrillation from demonstrate differences in when ECG obtained
ECG in normal sinus novel pattern age, within 30 d of atrial
rhythm recognition comorbidities fibrillation ECG
achievable with between 2
deep learning comparator
groups means
model can learn
from confounders
Raghunath Identification of atrial 12-lead ECG 1 430,000 1,600,000 0.85 + Looked at — Study population  Number needed to
et al, fibrillation from number of was 97% White screen to find 1 new
2021 ECG in normal sinus preventable — Single site with no case of atrial
rhythm strokes in external testing fibrillation was 9.
simulation Deep learning
outperformed the
CHARGE-AF score
(0.85 vs 0.77).

Elias P et al. 3 Am Coll Cardiol 2024:83:2472—2486



Diagnosis of arrhythmogenic syndromes

Al has higher capability to detect channelopathies. The machine
outperforms the human eye.

Deep learning enabled ECG model for detecting Brugada Syndrome

-------- [l e B ate X
| W, S B o
i ¢ : 2 Confusion matrix
A 4 s —4-A\ ~ r - e
i 09 /

o L EEs s 08 ®@
¥ =3 5 Eimay; e

of [ a7 Brugada 70

2
Z 05

0.2 20

0.1 == Deep learning model = ndependent test set
£ ° i ¢ aof *

Cardiologist | » Brugada Non-Brugada

A 75 2 A

AUC

00| »

Q.75 0.5 .2 !
1.00 0.75 0,50 0.25 0.00 Specificity Predicted label
Specificity

Liu C et al. Can J Cardiol. 2022 Feb:38(2):152-159.



Use of Artificial Intelligence and Deep Neural Networks in
Evaluation of Patients With Electrocardiographically Concealed
Long QT Syndrome From the Surface 12-Lead

Electrocardiogram

Al ECG capable of distinguishing patients with ECG concealed long QT syndrome
from those without long QT syndrome

A LTS detection: first £CG B | LQTS detection: all ECGs 1.0 [ A ] Receiver-operator characteristics curve
: i NN-LQTS vs 10-
YT s r YT s e normal
normal-first ECG narmal-all ECGs
i 0.8+
7 QTc-LQTS vs 0.8
08 v 081 va normal
JareLats v / QreLars s
/’ normal-first ECG ./'I narmal-all ECGS > 0.6 = 0.6
5 06 » 81 2 2
H H 2 =
i i v 0.4+
g g 0.41
“ o4 04
| 0.2 Detection of LQT1
Detection of LOT2
0.2 Detection of LQT3
02 02
0
0 0.2 0.4 0.6 0.8 1.0
0 . . . . ) 1-Specificity
0 T y T T J 0+ y T T y 0 0.2 0.4 0.6 0.8 1.0
0 02 04 06 08 10 0 02 04 06 08 10 1-specificit [8] confusion matrix
1-Specificity 1-Specificity peciticlty
Qe-LQTS vs normal NN-LQTS vs rormal Qe-LOTS vs norml NN-LQTS vs normal QTc-LQTS vs normal NN-LQTS vs normal f%d;md fl';rdzi“e‘j Egrdsi“gd Total | Accuracy, %
Estimated Estimated Estimated Estimated Estimated Estimated Estimated Estimated Estimated Estimated Estimated Estimated Actual LaTl 0 0 5 149 875
negative _positive negative _positive negative _positive negative _positive _ negative positive __ negative positive Actual LQT2 15 5 > 109 YW
Real negative 213 61 Real negative 221 53 Real negative 211 63 Real negative 234 40 Realnegative 154 84 Real negative 185 53 Actual LQT3 10 6 16 32 50.0
Real positive 80 233 Real positive 50 263 Real positive 77 236 Real positive 50 263 Real positive 35 94 Real positive 25 104 Total 155 108 27 264

Bos JM et al. JAMA Cardiol. 2021;6(5)



Prediction of structural heart disease from Al-
ECG

« 1. LV systolic dysfunction (low LVEF)
2. Cardiomyopathies

3. Aortic stenosis

4, Cardiac amyloidosis



Prediction of structural heart disease from Al-

ECG

TABLE 2 Selected Studies Using Artificial Intelligence Within Cardiology

2023

asymptomatic LV
dysfunction
(LVEF =40%)

externally and
on ECG images
that can be
uploaded to
web-app

with ECG /echo,
who differ from
intended
screening
population.

Other
First Author, Performance
Year Purpose Input Sites Patients Studies AUC Strengths Limitations Metrics
Trom conrounaers
Attia et al, Screening for 12-lead ECG 1 97,829 97,829 0.93 + Large population — No race/ethnicity Positive Al screen
2019 asymptomatic LV with ECG and data, likely without ventricular
dysfunction TTE done limited dysfunction at 4 <
(LVEF =35%) within 2 weeks population risk of developing
of one another diversity LV dysfunction
Ko et al, Identification of HCM 12-lead ECG 1 67,001 67,001 0.96 + Largest HCM — HCM prevalence in AUC 0.95 within
2020 study data set was subgroup of
population ~4%, but real- patients with LVH
+ ECGs from over world population
30y of interest likely
10 x lower.
Cohen-Shelly Detection of AS 12-lead ECG 3 258,607 258,607 0.85 + 3 tertiary referral — Population was False-positives had
et al, centers in 88% Caucasian twice the risk for
2021 geographically — No external test developing
distinct set moderate-severe
locations ASin15y
Elias et al, Detection of AS, AR, 12-lead ECG B 77,163 260,811 0.84 + Tested and — Performance AUC for AS; AUC for AR
2022 and MR validated at 4 dropped by 9% in 0.77 and MR 0.83
hospitals, mix hospital not
of academic/ included in
community training data
Sangha et al, Screening for 12-lead ECG 7 116,210 385,601 0.91 + Validated — Trained on patients

AUC range 0.88 to
0.95 across
external sets.
Positive screen with
>27-fold higher
odds of LV
dysfunction

Elias P et al. 3 Am Coll Cardiol 2024:83:2472—2486




Electrocardiogram screening for aortic valve
stenosis using artificial intelligence

Michal Cohen-Shelly
Benjamin A. Essayagh
Hector I. Michelena

1 Zachi l. Attia

1 Paul A. Friedman', Saki Ito',
1 Wei-Yin Ko',Dennis H. Murphree L
1 Maurice Enriquez-Sarano', Rickey E. Carter 5

2

Patrick W. Johnson 2 Peter A. Noseworthy', Francisco Lopez-Jimenez 1 and
Jae K. Oh'*
A B
Group AUC (95% Cl) Sensitivity, % Specificity, % OR (5% Cl)
Age
[18.60) 0881 (0,864, 0.897) 60.1(241/349)  87.4(34,149/30074) . 155(123,195)
[60,70) 0818 (0,601, 0.835) T18(466/649)  755(18,565/24,563) | b 79(66.93)
[70,80) 0795(0762,0807)  776(990/1.275)  B4B(14431/22353) | M 63(55,72)
[80 ) 0763(0750,0.776)  B32(1298/1560)  49.5(8479/13083) | W 49(42,58)
Sex
p Female 0857(0848,0866)  77.2(1.202/1558)  77.1(36.554/ 47.430) o 1.3(104,128)
> | : [— Valdtion (AUC=0.850) | Male 0839(0831,0847)  788(1763/2275) T18(37070/51683) | e 94(85,105)
;% n0 0(2 0[4 0]6 OIB 10 Sex and Age
(§ 7 [18,60) - Female 0,883 (0,852, 0.914) 67.8(78/115)  89.9(17,851/1,856) ——i|  188(127,278)
[18,60) - Male 0.871 (0.851,0.891) 60.7(163/234)  84.8(16,298/19.218) - 128(9.7,17.0)
(60,70) - Fomalo 0832 (0,807, 0.857) 700(181/230)  782(8440/10798) |+ 84(63,11.1)
[60,70) - Male 0,809 (0.785, 0.832) 728(305/418)  T34(10125118788) | e 74(59,92)
[7080) - Female 0,802 (0,781, 0.624) TIS(3T4/480) 671 (B788/10,108) | e 72(58,90)
o [70,80) - Male 0.787 (0.771, 0.803) TI5(616/795)  624(7643/12244) | ™ 57(48,68)
] [80, i) - Female 0.755 (0.736, 0.774) 804(589/733)  52.1(3475/6867) | ™ 45(37,54)
M (80, i) - Male 0.769 (0.752, 0.787) 8ET(09/827)  4GB(3004/6418) | el 53(43,65)
e ——— overall 0848(0842,0854)  781(2995/3833) TA3(3624/%9093) M 103(96,11.2)
0 02 04 06 08 10 P ——
1 - Specifciy 0 5 10 ésR 2% 25 %

258,607 Patients
ECG-Echo pairs

pienireieninenenie

< 50% Training and 10% Validation 7

/ Model AUC Sensitivity Specificity

1 0.85 78.0% 74.0%
2 0.87 78.0% 79.8%
3 0.90 75.0% 88.0%

1: ECG only
2: ECG + Age & Sex
3: Model 2 for non-hypertensive patients

12-lead ECG

Al

&4 B ] I MODEL

Aortic Stenosis
O Yes
O No

>

Cohen-Shelly M et al. European Heart Journal 2020; 42: 2885-2896



Prediction of aortic stenosis from AI-ECG

30
=3 # Initial test result = Positive (FP) — Megative (TN}
S v
O =T i
& 2
v @
-
@ 3 J
= A
© 5
S & 10
E g
- &
g
= E
U T T T T
0 5 10 15
Years after first ECG prediction
MNa. at risk
Positive (FP) 8474 T88D 793 102
Megative (TN) 20718 7 GG 2654 182

Cohen-Shelly M et al. European Heart Journal 2020; 42: 2885-2896



Artificial Intelligence-Enhanced
Electrocardiography Identifies Patients
With Normal Ejection Fraction at

Risk of Worse Outcomes

Jwan A. Naser, MBBS,  Eunjung Lee, PuD," Francisco Lopez-Jimenez, MD, MBA," Peter A. Noseworthy, MD,
Omar S. Latif, MD," Paul A. Friedman, MD," Grace Lin, MD, MBA," Jae K. Oh, MD," Christopher G. Scott, MS,
Sorin V. Pislaru, MD, PuD," Zachi 1. Attia, PuD," Patricia A. Pellikka, MD

« 100,586 patients (median age 63
years; 45.5% females)

« False Positive ECGs (FPs) had
more echocardiographic
abnormalities than True Negative
(TN) but less than False Negative
(FN) or True Positive (TP)
patients.

« An echocardiographic abnormality
was present in 97% of FPs.

CENTRAL ILLUSTRATION Artificial Intelligence-Enhanced Electrocardiography Identifies Patients With Normal
Ejection Fraction at Risk of Worse Outcomes

Q_ o
=M
7 e s e v o
| PP PR B e S S 1 J.
ST DAAY DA/ PUSY DA SN dadad :‘,_l»,,l,,_
| N SRS AR DS PSS DRSS PR DY NS DS VS
50 PS8 PSR VNS P D P D P e
AlI-ECG

Naser JA, et al. JACC Adv.. 2024; m(m):101179.

Worse Clinical and Echocardiographic Characteristics

negative tAg

AI-ECG tMales
$ Comorbidities
Worse LV systolic function
Worse LV diastolic pressures
False Worse right heart parameters

positive
Al-ECG
Worse Outcomes

=
o

Group Event/Total Hazard Ratio*
== TP 2,689/8,165 2.91(2.79-3.05)

False 2 08{=FN  1513/5275 197(1.87-2.08)
negative ® ==FP  1665/7458 1.64 (1.55-1.73)
AI-ECG 5 06 =™ 970179688 Reference
2 0.
o e
= 044 P<0.001 e
3 T
< 0.2 . :’/’//f/:/;; ": -
True WA i
positive ood A
AI'ECG T T T T T T

Years of Follow-Up
* Age and sex-adjusted hazard ratio (95% Cl)

The artificial intelligence (Al)-based ECG-stratified patients with normal ejection fraction (EF) into true negatives (TN) and false positives (FP) and patients with
reduced EF <50% as true positives (TP) and false negatives (FN). Patients who are abnormal by the AI-ECG (TP, FP) had worse clinical and echocardiographic
characteristics and outcomes compared to their counterparts with normal AI-ECG (FN, TN, respectively).

Naser J et al. JACC Adv. 2024:101179



FIGURE 2 Age and Sex-Adjusted Mortality Rates in the Different AI-ECG Groups
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bottom panel). The AI-ECG groups included false positives (FP), true negatives (TN), false negatives (FN), and true positives (TP). Age- and sex-adjusted hazard ratios
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Al in Ventricular Arrhythmias and Sudden Cardiac Death

Figure 1: Current Approach and Potential Future Perspectives in Long-term Sudden Cardiac Arrest Prediction
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of appropriate ICD shocks stratification tools genetic

Al = artificial intelligence; EF = ejection fraction; SCA = sudden cardiac arrest.
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Al Model
for
Prediction
of Sudden
Cardiac
Death

Population based research to identify risk patterns -

* Large database analysis of medical research and
survey datasets, claims datasets

* Pooled research database analysis

* Opportunities to combine large medical and non-
medical datasets to create risk models which
include environmental risk factors

* Identifying unknown patterns with unsupervised
learning

External Continuous Cardiac
Sensors -

« Continuous Heart Rate Sensor
* Continuous ECG sensor

Precision medicine approach using novel modeis
which incorporate vast amounts of an individual's
data, including -

Genetic data

Imaging data

Natural History

Family history

Environmental and occupational exposure
EMR review using natural language processing

Risk Stratification of
individuals for sudden
cardiac death

EARLY
TREATMENT AND
PREVENTION

Predicting Sudden
Cardiac Death

Temporal prediction of Sudden
Cardiac Death event in an
individual

Artificial Intelligence based
continuous analysis

Non-cardiac continuous Sensors -~

Implantable loop recorders
Pacemakers and Defibrillators
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Pulmonary artery pressure monitors

Continuous Electrolyte sensors
Continuous Body temperature sensors

Implantable Cardiac Rhythm and o
. _ - Sleep Sensors
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« Respiratory rate sensors
-
-
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Al capabillities In Electrophysmlogy

Procedures
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Al capabilities in Cardiac Implantable Electronic
Devices (Pacemakers, ICDs, CRTSs)

Pacemakers Detection of arrhythmias (AF, VT, etc)
Automatic programmability
Smart algorithms

ICDs Shock algorithms
Prediction of (impending) ICD shocks, electrical storm
Heart failure monitoring

CRTs Optimization algorithms
Prediction of CRT response
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Gaps and Challenges

Table 1

Important challenges/obstacles to translating artificial intelligence to clinical practice and suggestions for overcoming them

Challenges and obstacles

Potential approaches

1.

Lack of transparency (black box analyses) inhibits clinician
uptake

. Lack of validation and reproducibility in independent data sets

. Implementation in the EHR may be inhibited by regulatory

requirements for clinical use

. Need for strong technical teams, including data scientists,

computer scientists, analysts; attracting skilled personnel to
academics and medicine can be difficult, as industry offers higher
salaries

. Need for large, harmonized quality data sets with representation

of normal and abnormal examples and representation of data
from diverse populations to avoid bias; HIPAA and need to
preserve patient privacy can inhibit availability of large data sets
for development

Correlation analyses can sometimes help improve transparency.

Use of new approaches, such as gradient-weighted class activation
mapping, can help provide a level of interpretability.

As the main reason behind this challenge is lack of access to
independent data sets, any approaches that facilitate consistent
data sharing would help alleviate the problem. For example,
journals could require data be made public and provide a unified
service that is HIPAA compliant and gives authorized users
access.

FDA review and advances may facilitate approval steps.

Increase training pipelines.

Provide institutional incentives for multidisciplinary approaches.

Create and facilitate access to Al consulting services within each
institution.

Incorporate AI in medical training.

FDA National Evaluation System for health technology initiative -
aims to establish accessible data networks, including device
registries, EHR, claims databases, and patient-generated health
data.

Al = artificial intelligence; EHR = electronic health records.

Kabra et al. Cardiovascular Digital Health Journal 2022;3:263-275
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