

Sudden Cardiac Death in Heart Failure Risk Assessment and Prevention Ng Wai Kiat Pantai Hospital, Kuala Lumpur ARDIAC - SOC

6th Myanmar Cardiology Conference

I Have Nothing to Disclose Related to Current Presentation Apart from My Love to Durian and Chocolate

6th Myanmar Cardiology Conference

A man just died suddenly about to enter a cardiology centre

Global Burden of Heart Failure

Prevalence	Incidence	Mortality	Costs
Prevalence 1-3% in	Incidence 1-20 Cases per 1000	Mortality remains hig	h Annual health care
General Adult Population	Person-Year or per 1000 Population	30-day Mortality ~2-3%	costs up to €25,500 per year
Overall prevalence	Incidence stable/ declining	Mortality 3-year Mortality 73-year Mortality	Increasing due to major demographic changes (>65 years)
Prevalence in HFrEF	Incidence in HFrEF	5-year Mortality ~50-75%	Main cost drivers: - Directs costs (~70%) - Non-CVD comorbidities
Prevalence In HFpEF	Incidence in HFpEF	CVD HFreF Non- CVD HFpeF	- Medications/Diagnostics - Outpatient visits

Meta-Analysis: Patients with Heart Failure Survival Rates

Meta-Analysis: Patients with Heart Failure Survival Rates

China Cardiovascular Association Database-Heart Failure Centre Registry 2017-2021

ASIAN HF Registry (J Am Heart Assoc. 2020;9: e012199)

ASIAN HF Registry (J Am Heart Assoc. 2020;9: e012199)

ASIAN HF Registry (J Am Heart Assoc. 2020;9: e012199)

Asian HF Registry One-Year Cause-Specific Mortality Rates

	Overall			HFrEF			HFpEF		
	South Asia	Northeast Asia	Southeast Asia	South Asia	Northeast Asia	Southeast Asia	South Asia	Northeast Asia	Southeast Asia
No. of cardiovascular deaths	64	104	173	61	97	151	3	7	22
Specific cause of cardiovascular death									
Sudden death	41 (64.0)	43 (41.3)	49 (28.3)	41 (67.2)	41 (42.3)	47 (31.1)	0 (0.0)	2 (28.6)	2 (9.1)
HF death	18 (28.1)	52 (50.0)	41 (23.7)	17 (27.9)	47 (48.4)	39 (25.8)	1 (33.3)	5 (71.4)	2 (9.1)
AMI death	4 (6.3)	5 (4.8)	14 (8.1)	3 (4.9)	5 (5.2)	11 (7.3)	1 (33.3)	0 (0.0)	3 (13.6)
Stroke death	1 (1.6)	2 (1.9)	7 (4.0)	0 (0.0)	2 (2.21)	6 (4.0)	1 (33.3)	0 (0.0)	1 (4.6)
Cardiovascular haemorrhage death	0 (0.0)	1 (1.0)	4 (2.3)	0 (0.0)	1 (1.0)	2 (1.3)	0 (0.0)	0 (0.0)	2 (9.1)
Procedure death	0 (0.0)	1 (1.0)	2 (1.2)	0 (0.0)	1 (1.0)	2 (1.3)	0 (0.0)	0 (0.0)	0 (0.0)
Other cardiovascular death	0 (0)	0 (0)	56 (32.4)	0 (0.0)	0 (0.0)	44 (29.1)	0 (0.0)	0 (0.0)	12 (55.5)

Asian HF Registry One-Year Cause-Specific Mortality Rates

		Overall			HFrEF			HFpEF		
	South Asia	Northeast Asia	Southeast Asia	South Asia	Northeast Asia	Southeast Asia	South Asia	Northeast Asia	Southeast Asia	
No. of cardiovascular deaths	64	104	173	61	97	151	3	7	22	
Specific cause of cardiovascular death										
Sudden death	41 (64.0)	43 (41.3)	49 (28.3)	41 (67.2)	41 (42.3)	47 (31.1)	0 (0.0)	2 (28.6)	2 (9.1)	
HF death	18 (28.1)	52 (50.0)	41 (23.7)	17 (27.9)	47 (48.4)	39 (25.8)	1 (33.3)	5 (71.4)	2 (9.1)	
AMI death	4 (6.3)	5 (4.8)	14 (8.1)	3 (4.9)	5 (5.2)	11 (7.3)	1 (33.3)	0 (0.0)	3 (13.6)	
Stroke death	1 (1.6)	2 (1.9)	7 (4.0)	0 (0.0)	2 (2.21)	6 (4.0)	1 (33.3)	0 (0.0)	1 (4.6)	
Cardiovascular haemorrhage death	0 (0.0)	1 (1.0)	4 (2.3)	0 (0.0)	1 (1.0)	2 (1.3)	0 (0.0)	0 (0.0)	2 (9.1)	
Procedure death	0 (0.0)	1 (1.0)	2 (1.2)	0 (0.0)	1 (1.0)	2 (1.3)	0 (0.0)	0 (0.0)	0 (0.0)	

Causes of Death in Patients with HFrEF, HFmrEF, and HFpEF

Europe (ESC-HF-LT) HFpEF HFmrEF HFrEF UK (Framingham) HFpEF HFrEF US (GWTG-HF Registry) HFpEF 5 Years HFmrEF HFrEF US (Olmsted County HFpEF HFrEF Asian-HF Registry HFpEF HFrEF ()

Cardiovascular Research, 2022 118;17: 3272–3287

MERIT-HF: Mode of Death by NYHA Class

Lancet 1999;353:9169, 2001 - 2007

Relation Between Baseline LVEF and Mortality Rate

Mortality: HFrEF Versus HFpEF

- HFrEF patients
 - SCD account for ~45% of cardiovascular deaths
 - Worsening heart failure
 ~25%
 - Cardiac dysrhythmias are responsible for majority of SCD in patients with HFrEF

- HFpEF patients
 - SCD accounted for ~40% of cardiovascular mortality
 - Worsening heart failure accounted for 20–30% of cardiovascular deaths
 - Burden of lethal and non-lethal arrhythmias in HFpEF is unknown

Arrhythmia in HFmrEF and HFpEF: VIP-HF Study

113 patients consisting of combined HFmrEF and HFpEF patients implanted with implantable loop recorders to capture incident tachyarrhythmias and bradyarrhythmias
 - 0.6, 11.5, and 3.2 per 100 person-years incidence of sustained VT, non-sustained VT, and bradyarrhythmia, respectively, during a median follow-up of 1.8 years

Actiology for Sudden Cardiac Death

Actiology for Sudden Cardiac Death

What Causes Sudden Cardiac Death in Heart Failure?

Myocardial Substrate Replacement Fibrosis Interstitial Fibrosis Hypertrophy Abnormal Ca+ Handling Dispersion of Repolarisation Impaired Myocardial Cell Coupling

Triggers lschemia Heart Failure Metabolic Disturbances Electrolyte Abnormalities Autonomic Dysfunction Inflammation

What Causes Sudden Cardiac Death in Heart Failure?

<u>Risk Factors</u> Age Male Diabetes Chronic Kidney Disease Genetics

Triggers Ischaemia Heart failure Metabolic Disturbances Autonomic Dysfunction Inflammation Myocardial Substrate Replacement Fibrosis Interstitial Fibrosis Hypertrophy Abnormal Ca+ Handling Dispersion of Repolarisation Impaired Myocardial Cell Coupling

Inherited

Arrhythmias

2%

NICM

20%

Other

8%

70

Coronary Artery Disease

Interventions to Reduce the Risk of SCD in Chronic Heart Failure

Dosage of ACE-Inhibitor and Mode of Death

ARB and Sudden Death in Heart Failure

Circulation 2004;110:2180-3

Beta-Blockers, Heart Failure and SCD

- Beta-blockers decrease the risk of SCD and all-cause mortality in patients with HFrEF
 - -31% reduction in SCD (95% CI 0.62-0.77)
 - 33% reduction in all-cause mortality (95% CI 0.59–0.76)

Dosage of Beta-Blocker and Mode of Death

ESC Heart Failure 2020; 7: 3859–3870

MRA, Sudden Cardiac Death and Heart Failure

Study	Patients Number	SCD MRA	SCD Placebo		: _	Adjusted HR (95% CI	P Valı		
		Number	Number						
Rales	1652	110	82		—	0.70 (0.53-0.94)	0.01		
EPHESUS	6229	201	162		—	0.80 (0.64-1.00)	0.05		
EMPHASIS-HF	2562	76	61			0.74 (0.52-1.05)	0.09		
Overall	10443	387	305		•	0.76 (0.65-0.89)	0.00		
				0.5	1.0	2.0			
				MRA Better	Pla	cebo Better			
Clin Res Cardiol 2019 May 108(5) 477-486									

ARNI, Sudden Cardiac Death and Heart Failure

Eur Heart J, 2015;36:30 1990–1997

PARADIGM: Ventricular Arrhythmia Outcome

Outcome	Sacubit	ril/Valsartan	En	alapril	Hazard Ratio (95% CI)
	n/N (%)	Event Rate per 100 patient years (95% CI)	n/N (%)	Event Rate per 100 patient years (95% CI)	Analysis
Ventricular Arrhythmia	145/4187 (3.5%)	1.6 (1.4 – 1.9)	188/4212 (4.5)	2.1 (1.8 – 2.4)	$\begin{array}{c} 0.76 \; (0.62 \text{-} 0.95) \\ P = 0.015 \end{array}$
Ventricular Arrhythmia/ICD	165/4187 (3.9)	1.8 (1.6 - 2.1)	207/4212 (4.9)	2.3 (2.0 – 2.6)	$\begin{array}{c} 0.79 \; (0.65 - 0.97) \\ P = 0.0025 \end{array}$
VT/VF/Ventricular flutter/Torsades de pointes	133/4175 (3.2)	1.5 (1.2 – 1.7)	171/4195 (4.1)	1.9 (1.6 – 2.2)	0.77 (0.62 - 0.97) $P = 0.027$

DISCOVER-ARNI and ICD

351 Patients with HFrEF Referred for treatment with Sacubitril/Valsartan 65±10 years Mean LVEF 29±6%

225 (64%) ICD Carriers 64±11 Years Mean LVEF 28±6%

Eur Heart J Open 2021 Dec 21;2(1):oeab046. doi

Trends in the Rate of Sudden Death across Trial Groups over Time

Do We Still Need ICD for Primary Prevention of Sudden Death in HFrEF?

6th Myanmar Cardiology Conference

Residual Risk of SCD in HF trials

Results in Primary Prevention of Sudden Death With Implantation of an Implantable Cardioverter Defibrillator

Study	N	Patient	Inclusion Criteria	Treatment Group	Sudden Death
MADIT	196	ICM	LVEF<35%, previous AMI, NSVT, SMVT in EPS, NYHA I-III	ICD vs AAD	Reduction
CABG PATCH	900	ICM	LVEF<36%, surgical revascularization, positive SAE, NYHA I-IV	ICD vs Control	Reduction
MUSTT	704	ICM	LVEF 40%, previous AMI, NSVT, SMVT in EPS, NYHA I-III	ICD vs AAD vs Control	Reduction
MADIT II	1232	ICM	LVEF 30%, previous AMI, NYHA I-III	ICD vs Control	Reduction

Results in Primary Prevention of Sudden Death With Implantation of an Implantable Cardioverter Defibrillator

Study	N	Patient	Inclusion Criteria	Treatment Group	Sudden Death
CAT	104	NICM	LVEF ≤30%, recent onset of NICM (9 months), NYHA II-III	ICD vs Control	Same
AMIOVIRT	103	NICM	LVEF ≤35%, NSVT, NYHA I-III	ICD vs Amiodarone	Same
DANISH	1116	NICM	LVEF ≤35%	ICD vs Control	Same
DEFINITE- ICD	458	NICM	LVEF ≤35%, NSVT or VE, NYHA I-III	ICD vs Control	HR 0.20; 0.06 to 0.71 P=0.006
SCD-HeFT	2500	NICM +ICM	LVEF ≤35%, NYHA II-III	ICD vs Amiodarone vs Control	HR 0.30; 0.62 to 0.96; P=0.007

SCD-HeFT Trial

ESC Recommendations for an Implantable Cardioverter-Defibrillator in Patients with Heart Failure

Recommendations

An ICD is recommended to reduce the risk of sudden death and all-cause mortality in patients with symptomatic HF (NYHA class II–III) of an ischaemic aetiology (unless they have had a MI in the prior 40 days), and an LVEF \leq 35% despite \geq 3 months of OMT, provided they are expected to survive substantially longer than 1 year with good functional status

ESC Recommendations for an Implantable Cardioverter-Defibrillator in Patients with Heart Failure

Recommendations	Class	Level
An ICD should be considered to reduce the risk of sudden death and all-cause mortality in patients with symptomatic HF (NYHA class II–III) of a non-ischaemic aetiology, and an LVEF \leq 35% despite \geq 3 months of OMT, provided they are expected to survive substantially longer than 1 year with good functional status	IIa	A

Risk Stratification for Sudden Death in Dilated Cardiomyopathy

- LVEF has been used as a key criterion for selecting patients with DCM for an ICD for primary prevention purposes
 - Registry data suggest that many patients with DCM and an out-ofhospital cardiac arrest do not have a markedly reduced left ventricular ejection fraction
 - Many patients with reduced LVEF die of non-sudden causes of death

MADIT-ICD benefit group	Lowest	Intern	Intermediate				
VT/VF score	Low (<7)	Low (<7)	High (≧7)	High (≧7)			
Non-arrhythmic mortality score	High (≧3)	Low (<3)	$\begin{array}{c c} Low & High \\ (<3) & (\geq 3) \end{array}$				
VT/VF sc	ore	Non-arr	Non-arrhythmic mortality score				
Variable	Points	Va	riable	Points			
LVEF≦25%		CRT		-1			
Atrial arrhythmia	+1	NYHA cl	NYHA class≧II				
Heart Rate>75bpm		Diabetes	Diabetes				
SBP<140mmHg		BMI<23k	BMI<23kg/m ²				
Myocardial Infarction		Atrial arrl	Atrial arrhythmia				
Age<75yrs	+2	LVEF≦25	LVEF≦25%				
Male		Age≧75y	Age≧75yrs				
Prior NSVT							
		E	ur Heart J. 2021	;42:1676-1684.			

MADIT-ICD: ICD or Not ICD

Open Access Full Text Article

ORIGINAL RESEARCH

Prediction Efficiency of MADIT-ICD Benefit Score for Outcome in Asian Patients with Implantable Cardioverter-Defibrillator

Ke Song¹, Yiran Hu^{1,2}, Wei Chen¹, Wei Hua², Zening Jin¹

¹Department of Cardiology and Macrovascular Disease, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, People's Republic of China; ²Arrhythmia Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China

Correspondence: Zening Jin, Department of Cardiology and Macrovascular Disease, Beijing Tiantan Hospital, Capital Medical University, No. 119 South Fourth Ring West Road, Beijing, 100070, People's Republic of China, Email zening_jin@126.com; Wei Hua, Arrhythmia Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, North Lishi Road No.167, Beijing, 100073, People's Republic of China, Tel +86 010-59975832, Email drhuaweifw@sina.com

Background: Not all patients with heart failure derive consistent benefit from prophylactic implantable cardioverter-defibrillator (ICD). We aimed to evaluate the role of MADIT-ICD benefit score in risk-stratifying in Asian patients with left ventricular ejection fraction (LVEF) \leq 35%.

Methods: In this two-center, retrospective study, a total of 136 patients with LVEF \leq 35% who received an ICD for primary prevention were enrolled. The endpoints were defined as the ventricular tachycardia \geq 200bpm (VT) or ventricular fibrillation (VF) and non-arrhythmic death. Based on the MADIT-ICD benefit score system, all patients were categorized into three groups: highest benefit group (n = 41), intermediate benefit group (n = 80), and lowest benefit group (n = 15).

Results: Forty patients experienced VT/VF and seven died of non-arrhythmic causes during a median follow-up of 44.8 ± 28.9 months. Kaplan–Meier curves showed that patients in highest benefit group had a worse VT/VF occurrence compared to those in other groups. In the highest benefit group, the predicted risk of VT/VF was 17-fold higher than the risk of non-arrhythmic mortality (41.5% vs 2.4%, P < 0.001). In the intermediate benefit group, the predicted risk of VT/VF was 4.2-fold higher than the risk of non-arrhythmic mortality (26.3% vs 6.3%, P = 0.001). In the lowest benefit group, however, the difference in the corresponding predicted risks was

Conclusion: We demonstrate that MADIT-ICD benefit score can be used for the assessment of ICD primary prevention benefits in Asian patients with LVEF $\leq 35\%$

Establish and Emerging Risk Factors for SCD in DCM

Effect of the Waiting Period on SCD and Non-SCD Risk Before ICD Implantation

Summary

Conclusion

- Sudden death is responsible for most deaths in patients with HF
- OMT should be the key first step in SCD risk reduction
- Identification and prevention of SCD in HF is of critical importance in patients with HFrEF
- Goal is to identify patients that is most likely to benefit from ICD therapy

